Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiu-Lian Zhang,^a Xiao-Ming Chen^a and Seik Weng Ng^{a,b}*

^aSchool of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.038 wR factor = 0.112 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Guanidinium 4-hydroxy-3-carboxybenzenesulfonate

The anions of guanidinium 4-hydroxy-3-carboxybenzenesulfonate, $CH_6N_3^+ \cdot C_7H_5O_6S^-$, are linked into a linear chain by a short $O_{carboxyl} \cdots O_{sulfonate}$ interaction of 2.611 (2) Å; the hydroxyl group is linked intramolecularly to the carbonyl O atom, also by a short hydrogen bond $[O \cdots O = 2.601 (2) Å]$. Adjacent chains are connected into a three-dimensional network structure through hydrogen-bonding interactions with the cation.

Comment

The crystal structure of guanidinium 3-carboxybenzenesulfonate contains two symmetry-independent formula units; one anion is linked across an inversion center through the carboxylic acid $-CO_2H$ unit $[O-H\cdots O 2.662 (4) \text{ Å}]$ into a dianionic entity. In the other anion, the carboxylic acid unit is linked to the sulfonate group of an adjacent anion $[O-H\cdots O 2.684 (4) \text{ Å}]$, forming a linear chain (Videnova-Adrabińska *et al.*, 2001). The cations interact with the anions to furnish a three-dimensional network. With the introduction of a hydroxyl group in the 4-position of the aromatic ring, the resulting compound, (I) (scheme and Fig. 1), also features a similarly linked chain, but the chain (Fig. 2) is connected by a stronger hydrogen bond [2.611 (2) Å]. The hydroxy H atom serves no function other than to form an internal hydrogen bond.

The cations and anions are linked into a tightly held threedimensional network structure that is marginally more compact compared with guanidinium 3-carboxybenzenesulfonate (Videnova-Adrabińska *et al.*, 2001), as noted from its higher density. The 4-hydroxy-3-carboxybenzenesulfonate anion has recently been characterized as its dihydrated 4,4'bipyridinium salt (Muthiah *et al.*, 2003).

Experimental

Equimolar quantities of guanidine hydrochloride (0.02 g, 0.2 mmol) and sodium 4-hydroxy-3-carboxybenzenesulfonate (0.05 g, 0.2 mmol) were dissolved in a small volume of water and the solvent was allowed to evaporate over several days. CH&N analysis for $C_8H_{11}N_3O_6$ (found/calc): C 34.88 (34.65), H 4.20 (4.00), N 15.24% (15.16%).

Received 18 February 2004 Accepted 20 February 2004 Online 28 February 2004

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Crystal data

CH₆N₃⁺·C₇H₅O₆S⁻ $M_r = 277.26$ Triclinic, $P\overline{1}$ a = 7.4072 (6) Å b = 8.6995 (7) Å c = 10.2525 (8) Å $\alpha = 87.205$ (1)° $\beta = 74.517$ (1)° $\gamma = 66.277$ (1)° V = 581.60 (8) Å³

Data collection

Bruker SMART APEX areadetector diffractometer ω and φ scans Absorption correction: none 5004 measured reflections 2564 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.112$ S = 1.042564 reflections 207 parameters All H-atom parameters refined

Table 1

Selected geometric parameters (Å, °).

S1-O1	1.444 (1)	N3-C8	1.317 (2)
S1-O2	1.456 (1)	C1-C2	1.376 (2)
S1-O3	1.463 (1)	C1-C6	1.397 (2)
S1-C1	1.762 (2)	C2-C3	1.389 (2)
O4-C7	1.315 (2)	C3-C4	1.400 (2)
O5-C7	1.212 (2)	C3-C7	1.482 (2)
O6-C4	1.357 (2)	C4-C5	1.393 (2)
N1-C8	1.313 (2)	C5-C6	1.369 (3)
N2-C8	1.326 (2)		
O1-S1-O2	113.2 (1)	C4-C3-C7	119.5 (2)
O1-S1-O3	112.3 (1)	O6-C4-C5	118.1 (2)
O2-S1-O3	111.8 (1)	O6-C4-C3	122.1 (2)
O1-S1-C1	106.6 (1)	C5-C4-C3	119.9 (2)
O2-S1-C1	106.4 (1)	C6-C5-C4	120.3 (2)
O3-S1-C1	105.9 (1)	C5-C6-C1	120.1 (1)
C2-C1-C6	120.0(1)	O5-C7-O4	123.9 (2)
C2-C1-S1	120.3 (1)	O5-C7-C3	123.3 (2)
C6-C1-S1	119.7 (1)	O4-C7-C3	112.8 (2)
C1-C2-C3	120.6 (1)	N1-C8-N3	120.4 (2)
C2-C3-C4	119.2 (1)	N1-C8-N2	119.8 (2)
C2-C3-C7	121.3 (1)	N3-C8-N2	119.8 (2)

Table 2		
Hydrogen-bonding geometry	(Å,	°).

. .

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O4-H4o···O3 ⁱ	0.84(1)	1.78(1)	2.611 (2)	171 (3)
O6−H60···O5	0.85(1)	1.80(2)	2.601 (2)	155 (3)
$N1 - H1n2 \cdot \cdot \cdot O1$	0.84 (1)	2.01(1)	2.851 (2)	177 (2)
$N1 - H1n1 \cdots O3^{ii}$	0.84(1)	2.05 (1)	2.885 (2)	172 (2)
$N2-H2n1\cdots O2$	0.85(1)	2.16(1)	2.988 (2)	166 (2)
$N2-H2n2\cdots O6^{iii}$	0.85(1)	2.52 (2)	3.246 (2)	143 (2)
N3-H3 $n1$ ···O6 ⁱⁱⁱ	0.86(1)	2.19(1)	3.006 (2)	159 (2)
$N3-H3n2\cdots O2^{ii}$	0.86 (1)	2.13 (1)	2.949 (2)	160 (2)

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z; (iii) x, y, z - 1.

Z = 2 $D_x = 1.583 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 2298 reflections $\theta = 2.5-28.0^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 298 (2) KPlate, colorless $0.31 \times 0.13 \times 0.05 \text{ mm}$

2236 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.015$ $\theta_{\text{max}} = 27.5^{\circ}$ $h = -8 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -13 \rightarrow 13$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0683P)^2 \\ &+ 0.0934P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.22 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.33 \text{ e } \text{ Å}^{-3} \end{split}$$

$N_{2}^{N3} = \begin{pmatrix} 0.4 & 0.5 \\ 0.4 & 0.6 \\ 0.2 & 0.1 \\ 0.2 & 0.1 \\ 0.2 & 0.1 \\ 0.2 & 0.1 \\ 0.1 & 0.1 \\ 0$

Figure 1

ORTEPII (Johnson, 1976) plot of $CH_6N_3^+ \cdot C_7H_5O_6S^-$, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Figure 2

ORTEPII (Johnson, 1976) plot of the the hydrogen-bonded $[C_7H_5O_6S]^-$ chain.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The authors thank the Guangdong Institute of Education, the National Natural Science Foundation of China (No. 20131020), the Natural Science Foundation of Guangdong Province (No. 036601, Sun Yat-Sen University and the University of Malaya for supporting this work.

References

- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). *Acta Cryst.* E**59**, o2015–o2017.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Videnova-Adrabińska, Turowska-Tyrk, I., Borowiak, T. & Dutkiewicz, G. (2001). New J. Chem. 25, 1403–1409.