Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiu-Lian Zhang, ${ }^{\text {a }}$ Xiao-Ming Chen ${ }^{\mathrm{a}}$ and Seik Weng $\mathbf{N g}^{\mathrm{a}, \mathrm{b} *}$
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.112$
Data-to-parameter ratio $=12.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Guanidinium 4-hydroxy-3-carboxybenzenesulfonate

The anions of guanidinium 4-hydroxy-3-carboxybenzenesulfonate, $\mathrm{CH}_{6} \mathrm{~N}_{3}^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}^{-}$, are linked into a linear chain by a short $\mathrm{O}_{\text {carboxyl }} \cdots \mathrm{O}_{\text {sulfonate }}$ interaction of 2.611 (2) \AA; the hydroxyl group is linked intramolecularly to the carbonyl O atom, also by a short hydrogen bond $[\mathrm{O} \cdots \mathrm{O}=2.601$ (2) \AA]. Adjacent chains are connected into a three-dimensional network structure through hydrogen-bonding interactions with the cation.

Comment

The crystal structure of guanidinium 3-carboxybenzenesulfonate contains two symmetry-independent formula units; one anion is linked across an inversion center through the carboxylic acid $-\mathrm{CO}_{2} \mathrm{H}$ unit $[\mathrm{O}-\mathrm{H} \cdots \mathrm{O} 2.662(4) \AA$) into a dianionic entity. In the other anion, the carboxylic acid unit is linked to the sulfonate group of an adjacent anion $[\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ 2.684 (4) Å], forming a linear chain (Videnova-Adrabińska et al., 2001). The cations interact with the anions to furnish a three-dimensional network. With the introduction of a hydroxyl group in the 4-position of the aromatic ring, the resulting compound, (I) (scheme and Fig. 1), also features a similarly linked chain, but the chain (Fig. 2) is connected by a stronger hydrogen bond [2.611 (2) \AA]. The hydroxy H atom serves no function other than to form an internal hydrogen bond.

(I)

The cations and anions are linked into a tightly held threedimensional network structure that is marginally more compact compared with guanidinium 3-carboxybenzenesulfonate (Videnova-Adrabińska et al., 2001), as noted from its higher density. The 4-hydroxy-3-carboxybenzenesulfonate anion has recently been characterized as its dihydrated 4,4'bipyridinium salt (Muthiah et al., 2003).

Experimental

Equimolar quantities of guanidine hydrochloride ($0.02 \mathrm{~g}, 0.2 \mathrm{mmol}$) and sodium 4-hydroxy-3-carboxybenzenesulfonate ($0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$) were dissolved in a small volume of water and the solvent was allowed to evaporate over several days. CH\&N analysis for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{6}$ (found/calc): C 34.88 (34.65), H 4.20 (4.00), $\mathrm{N} 15.24 \%$ (15.16\%).

Received 18 February 2004 Accepted 20 February 2004 Online 28 February 2004

Crystal data

$\mathrm{CH}_{6} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}^{-}$
$M_{r}=277.26$
Triclinic, $P \overline{1}$
$a=7.4072$ (6) \AA
$b=8.6995$ (7) \AA
$c=10.2525(8) \AA$
$\alpha=87.205(1)^{\circ}$
$\beta=74.517(1)^{\circ}$
$\gamma=66.277(1)^{\circ}$
$V=581.60(8) \AA^{3}$
Data collection
Bruker SMART APEX area-
detector diffractometer
ω and φ scans
Absorption correction: none
5004 measured reflections 2564 independent reflections
$Z=2$
$D_{x}=1.583 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2298
reflections
$\theta=2.5-28.0^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, colorless
$0.31 \times 0.13 \times 0.05 \mathrm{~mm}$

2236 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-8 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.112$
$S=1.04$
2564 reflections
207 parameters
All H -atom parameters refined
Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

S1-O1	$1.444(1)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.317(2)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.456(1)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.376(2)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.463(1)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.397(2)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.762(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.389(2)$
$\mathrm{O} 4-\mathrm{C} 7$	$1.315(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.400(2)$
$\mathrm{O} 5-\mathrm{C} 7$	$1.212(2)$	$\mathrm{C} 3-\mathrm{C} 7$	$1.482(2)$
$\mathrm{O} 6-\mathrm{C} 4$	$1.357(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.393(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.313(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.369(3)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.326(2)$		
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$113.2(1)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7$	$119.5(2)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	$112.3(1)$	$\mathrm{O} 6-\mathrm{C} 4-\mathrm{C} 5$	$118.1(2)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	$111.8(1)$	$\mathrm{O} 6-\mathrm{C} 4-\mathrm{C} 3$	$122.1(2)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$106.6(1)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.9(2)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$106.4(1)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.3(2)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1$	$105.9(1)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.1(1)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$120.0(1)$	$\mathrm{O} 5-\mathrm{C} 7-\mathrm{O} 4$	$123.9(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$120.3(1)$	$\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 3$	$123.3(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$119.7(1)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 3$	$112.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.6(1)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 3$	$120.4(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.2(1)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2$	$119.8(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$	$121.3(1)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{N} 2$	$119.8(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 40 \cdots \mathrm{O}{ }^{\text {i }}$	0.84 (1)	1.78 (1)	2.611 (2)	171 (3)
O6-H6o . ${ }^{\text {O } 5}$	0.85 (1)	1.80 (2)	2.601 (2)	155 (3)
$\mathrm{N} 1-\mathrm{H} 1 n 2 \cdots \mathrm{O} 1$	0.84 (1)	2.01 (1)	2.851 (2)	177 (2)
$\mathrm{N} 1-\mathrm{H} 1 n 1 \cdots \mathrm{O}^{\text {ii }}$	0.84 (1)	2.05 (1)	2.885 (2)	172 (2)
$\mathrm{N} 2-\mathrm{H} 2 n 1 \cdots \mathrm{O} 2$	0.85 (1)	2.16 (1)	2.988 (2)	166 (2)
$\mathrm{N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{O} 6^{\text {iii }}$	0.85 (1)	2.52 (2)	3.246 (2)	143 (2)
$\mathrm{N} 3-\mathrm{H} 3 n 1 \cdots \mathrm{O} 6^{\text {iii }}$	0.86 (1)	2.19 (1)	3.006 (2)	159 (2)
$\mathrm{N} 3-\mathrm{H} 3 n 2 \cdots \mathrm{O} 2^{\text {ii }}$	0.86 (1)	2.13 (1)	2.949 (2)	160 (2)

Symmetry codes: (i) $x, y-1, z$; (ii) $x-1, y, z$; (iii) $x, y, z-1$.

Figure 1
ORTEPII (Johnson, 1976) plot of $\mathrm{CH}_{6} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}^{-}$, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Figure 2

ORTEPII (Johnson, 1976) plot of the the hydrogen-bonded $\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}\right]^{-}$ chain.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Guangdong Institute of Education, the National Natural Science Foundation of China (No. 20131020), the Natural Science Foundation of Guangdong Province (No. 036601, Sun Yat-Sen University and the University of Malaya for supporting this work.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Muthiah, P. T., Hemamalini, M., Bocelli, G. \& Cantoni, A. (2003). Acta Cryst. E59, o2015-o2017.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Videnova-Adrabińska, Turowska-Tyrk, I., Borowiak, T. \& Dutkiewicz, G. (2001). New J. Chem. 25, 1403-1409.

